Search Any Thing On Blog

Tuesday, July 12, 2011

Final Term VU past papers of MTH101- Calculus And Analytical Geometry solved

FINALTERM  EXAMINATION
Spring 2009
MTH101- Calculus And Analytical Geometry (Session - 1)
Question No: 1    ( Marks: 1 )    - Please choose one
 If f is a twice differentiable function at a stationary point  and    then f has relative …………. At

       ► Minima
       ► Maxima
       ► None of these
   
Question No: 2    ( Marks: 1 )    - Please choose one
 If f is a twice differentiable function at a stationary point  and    then f has relative …………. At

       ► Minima    
       ► Maxima
       ► None of these
   
Question No: 3    ( Marks: 1 )    - Please choose one
 

       ► 2
       ► 4
       ► 1
       ►
   
Question No: 4    ( Marks: 1 )    - Please choose one
 


       ► 1
       ► 0
       ► e
       ► None of these
   
Question No: 5    ( Marks: 1 )    - Please choose one
 
       ►
       ►
       ►
       ►
   
Question No: 6    ( Marks: 1 )    - Please choose one
 If  then
       ► 0
       ►
       ►
       ►
   
Question No: 7    ( Marks: 1 )    - Please choose one
 Consider a function and a constant  then

       ► 0
       ►
       ►
       ►
   
Question No: 8    ( Marks: 1 )    - Please choose one
 Suppose that and  are differentiable  functions of   then
 

       ►
       ►
       ►
       ►
   
Question No: 9    ( Marks: 1 )    - Please choose one
 The power rule,     holds if n is __________
       ► An integer
       ► A rational number
       ► An irrational number
       ► All of the above
   
Question No: 10    ( Marks: 1 )    - Please choose one
 Let a function  be defined on an interval, and let   and    denotes two distinct points in that interval. If   for all points  and   then which of the following statement is correct?
       ►  is a decreasing function
       ►  is an increasing function
       ► is a constant function
   
Question No: 11    ( Marks: 1 )    - Please choose one
 If  on an open interval (a,b) then which of the following statement is correct?
       ►  is concave up on (a, b).
       ►  is concave down on (a, b)
       ► is linear on (a, b).
   
Question No: 12    ( Marks: 1 )    - Please choose one
 What does 'n' represent in Riemann Sum ?
       ► No. of Circles
       ► No. of Rectangles
       ► No. of Loops
       ► No. of Squares
   
Question No: 13    ( Marks: 1 )    - Please choose one
 If   is continuous function such that   then  has  _________  on 
       ► maximum value but no minimum
       ► minimum value but no maximum
       ► both maximum and minimum value
   
Question No: 14    ( Marks: 1 )    - Please choose one
 The expression  , represents a function of :


       ►                      
      
       ►
       ►  Both  and
   
Question No: 15    ( Marks: 1 )    - Please choose one
   

if c is a constant


       ► 0
       ►
       ►
       ►
   
Question No: 16    ( Marks: 1 )    - Please choose one
 Sigma notation is represented by which of the following Greek letter?





       ►
       ►
       ►
       ►
   
Question No: 17    ( Marks: 1 )    - Please choose one
 In the following figure, the area enclosed is bounded below by :
                                  
       ►
       ►
       ►
       ►
   
Question No: 18    ( Marks: 1 )    - Please choose one
 In the following figure, the area bounded on the sides by the lines are :
                                  
       ►
       ►
       ►
       ►
   
Question No: 19    ( Marks: 1 )    - Please choose one
 What is the area of the region in the following figure?
                                   
       ►
       ►
       ►
       ►
   
Question No: 20    ( Marks: 1 )    - Please choose one
 Which of the following is approximate area under the curve  over the interval , evaluated by using the formula


If the interval  is divided into two sub-intervals of equal
 length and  and  are left endpoint of each sub-interval.
       ► 17
       ► 20
       ► 23
   
Question No: 21    ( Marks: 1 )    - Please choose one
 Which of the following is approximate area under the curve  over the interval , evaluated by using the formula


If the interval  is divided into two sub-intervals of equal
length and  and  are right endpoint of each sub-interval.
       ► 8
       ► 10
       ► 12
   
Question No: 22    ( Marks: 1 )    - Please choose one
 
       ► 1
       ►
       ►
       ►
   
Question No: 23    ( Marks: 1 )    - Please choose one
 Suppose  and  are integrable functions on [a,b] and c is a constant, then  
       ►
       ►
       ►
       ► 0
   
Question No: 24    ( Marks: 1 )    - Please choose one
 If the function  is continuous on [a,b] and if  for all  in [a,b], then which of the following gives area under the curve  over the interval [a,b]?
       ►
       ►
       ►
       ► (Width) (Height)
   
Question No: 25    ( Marks: 1 )    - Please choose one
 Let region R in the first quadrant enclosed between    is revolved about the
x-axis .Which of the following equation gives the volume of a solid by cylindrical shells?
       ►
       ►
       ►
       ►
   
Question No: 26    ( Marks: 1 )    - Please choose one
 Let f is a smooth function on [a, b]. What will be the arc length L of the curve y = f(x) from x = a to x = b?


       ►
       ►
       ►
       ►
   
Question No: 27    ( Marks: 1 )    - Please choose one
 If f is continuous on (a, b] but does not have a limit from the right then the integral defined by   is called :

       ► Improper
       ► Proper
       ► Line
   
Question No: 28    ( Marks: 1 )    - Please choose one
 For a sequence  if the ratio of  successive terms then the sequence is known as:


       ► Increasing
       ► Decreasing
       ► Nondecreasing
       ► Nonincreasing
   
Question No: 29    ( Marks: 1 )    - Please choose one
 For a sequence  if the ratio of successive terms then the sequence is known as:


       ► Increasing
       ► Decreasing
       ► Nondecreasing
       ► Nonincreasing
   
Question No: 30    ( Marks: 1 )    - Please choose one
 Consider the indefinite integral
Let

Is the following substitution correct?
       ► Yes
       ► No
   
Question No: 31    ( Marks: 1 )    - Please choose one
 The series  be a series with positive terms and suppose that   if   , then which of the following is true?



       ► Converges
       ► Diverges
       ► May converges or diverges
       ► Gives no information
   
Question No: 32    ( Marks: 1 )    - Please choose one
 The series  be a series with positive terms and suppose that   if  , then which of the following is true?


       ► Converges
       ► Diverges
       ► May converges or diverges
       ► Gives no information
   
Question No: 33    ( Marks: 1 )    - Please choose one
 If the series  converges  , then which of the following is true for ?

       ► Converges
       ► Diverges
       ► Gives no information
   
Question No: 34    ( Marks: 1 )    - Please choose one
 Let  be a series with nonzero terms and suppose that    if, then which of the following is true?


       ► Then the series  diverges
       ► The series  converges absolutely and therefore converges
       ►  May converges or diverges
       ► Gives no information
   
Question No: 35    ( Marks: 1 )    - Please choose one
 
       ► -2
       ► 0
       ► 2
       ► 4
   
Question No: 36    ( Marks: 1 )    - Please choose one
 How many critical points exist for a function  if
       ► Zero
       ► One
       ► Two
       ► Four
   
Question No: 37    ( Marks: 1 )    - Please choose one
    
       ►
       ►
       ►
       ►
   
Question No: 38    ( Marks: 1 )    - Please choose one
    

       ►
       ►
       ►
       ►
   
Question No: 39    ( Marks: 1 )    - Please choose one
 Let  then which of the following is the length of the curve?
       ►
       ►
       ►
       ►
   
Question No: 40    ( Marks: 1 )    - Please choose one
 Which of the following are first two terms for the Taylor series of  at x = 0?
       ►
       ►
       ►
       ►
   
Question No: 41    ( Marks: 2 )
 Evaluate the integral

   
Question No: 42    ( Marks: 2 )
 Evaluate the improper integral

   
Question No: 43    ( Marks: 2 )
 A function  has critical point 2 in an interval [0, 5]. Find the maximum value of the function and  point having this value.
   
Question No: 44    ( Marks: 3 )
 Evaluate:
   
Question No: 45    ( Marks: 3 )
 Find the area of the region bounded by the curve, and bounded on the sides by the lines and

So we have



   
Question No: 46    ( Marks: 3 )
 Determine whether the following sequence converges or diverges. If it converges, find the limit.
   
Question No: 47    ( Marks: 5 )
 Use the Alternating series Test to determine whether the given series converges

 

   
Question No: 48    ( Marks: 5 )
 Evaluate the integral

Solution



   
Question No: 49    ( Marks: 5 )
 Evaluate the sums


   
Question No: 50    ( Marks: 10 )
 Find the volume of the solid that results when the region enclosed by the given curves is revolved about the x – axis.

No comments:

Post a Comment